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Abstract. The cloning of quantum variables with continuous spectra is investigated. We define a Gaussian
1-to-2 cloning machine that copies equally well two conjugate variables such as position and momentum or
the two quadrature components of a light mode. The resulting cloning fidelity for coherent states, namely
F = 2/3, is shown to be optimal. An asymmetric version of this Gaussian cloner is then used to assess
the security of a continuous-variable quantum key distribution scheme that allows two remote parties to
share a Gaussian key. The information versus disturbance tradeoff underlying this continuous quantum
cryptographic scheme is then analyzed for the optimal individual attack. Methods to convert the resulting
Gaussian keys into secret key bits are also studied. Finally, the extension of the Gaussian cloner to optimal
N-to-M continuous cloners is discussed, and it is shown how to implement these cloners for light modes
using a phase-insensitive optical amplifier and beam splitters. In addition, a phase-conjugate input cloner
is defined, yielding M clones and M’ anticlones from N replicas of a coherent state and N’ replicas of its
phase-conjugate (with M’ — M = N’ — N). This novel kind of cloners is shown to outperform the standard

N-to-M cloners in some cases.

PACS. 03.67.Dd Quantum cryptography — 42.50.-p

1 Introduction

Quantum information theory was originally developed for
discrete quantum variables, in particular quantum bits
(qubits). Recently, however, it has been realized that sev-
eral concepts that were invented for qubits extend very
naturally to the domain of continuous variables (e.g., po-
sition and momentum of a particle, or the quadrature
components of a mode of the electromagnetic field). The
first results in this direction concerned quantum teleporta-
tion [8,28], and gave rise to a lot of interest in continuous-
variable quantum information processing. In the present
paper, we focus on the notions of quantum cloning and
quantum key distribution, and investigate how they can
be extended to continuous variables.

Cloning machines (which achieve the optimal approxi-
mate cloning transformation compatible with the so-called
no-cloning theorem) have been a fundamental research
topic in the last five years (see e.g., [6] for an overview). In
Section 2, we will define a Gaussian cloner, which achieves
the optimal cloning of a continuous variable satisfying
the requirement of covariance with respect to displace-
ments and rotations in phase space. In other words, this
cloner duplicates all coherent states with a same fidelity
(F' = 2/3). The optical implementation of this cloner and
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its extension to N-to-M cloners are also discussed. In Sec-
tion 3, we then turn to quantum key distribution, and
propose a continuous-variable cryptosystem that allows
two remote parties to share a Gaussian key by exchanging
continuous key elements carried by squeezed states. This
scheme is the proper continuous counterpart of the pro-
tocol BB84 [2] for qubits. Our continuous cryptosystem is
related to the Gaussian cloner in the sense that an asym-
metric version of the latter achieves the optimal individual
eavesdropping strategy. Thus, our results on continuous
cloning can be used to analyze the information versus dis-
turbance tradeoff in order to assess the security of this
continuous cryptosystem. We find that the information
gained by the eavesdropper is exactly upper bounded by
the information lost by the authorized receiver. We also
investigate a protocol to convert the raw Gaussian keys
into a string of secret key bits, that is, we show how to
apply reconciliation and privacy amplification on contin-
uous key elements. Finally, in Section 4, we come back
to the issue of cloning continuous variables and define a
new class of “phase-conjugate input” cloners. These clon-
ers produce several clones (and anticlones) from several
replicas of an unknown coherent state and its phase con-
jugate. We show that adding these extra phase-conjugate
input modes makes it possible to improve the cloning (and
anticloning) fidelity with respect to the standard N-to-M
cloners.
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2 Quantum cloning machines

Let us first seek for a transformation that duplicates with a
same fidelity all coherent states [t)), with 1 = (z+ip)/v/2.
The fundamental requirement we put on this transforma-
tion is that it is covariant with respect to displacements in
phase space. Thus, if two input states are identical up to
a displacement D(x p) = e~ ¥PeiP?  then their respective
copies should be identical up to the same displacement.
(In this paper, we put & = 1). Denoting by H the Hilbert
space corresponding to a single system, cloning can be de-
fined as a completely positive trace-preserving linear map

C: H — HZ2: [Y)(v| — C(|)(¢]) such that

¢ (D(a.p)v) (| @, p)) =

D= (z, p)C(|) () DT (2, p), (1)
for all displacements ﬁ(x, p) in phase space. A simple way
to meet displacement covariance is to seek for a cloning
transformation whose individual clone states are given
each by a Gaussian mixture:

_ 224p2
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p([9) () =

% D, p) )| DT (2,p),  (2)
where o2 is the cloning-induced error variance. In the fol-
lowing we will refer to such a transformation as a Gaussian
cloner. Note that equation (2) is such that the cloning-
induced noise on the quadratures & or p is invariant under
rotations in phase space, which is certainly a desirable
property since it is satisfied by coherent states. Consider
the following unitary operator:

—i(#3—%2)p1 e—iﬁl(;ﬁQ-&-ﬁ:s)e—ifC‘z;ﬁ:s’ (3)
where modes 1, 2 and 3 refer respectively to the orig-
inal, the additional copy, and an auxiliary mode (also
referred to as an ancilla). This operator can be used to
build a Gaussian cloner if the additional copy and the
ancilla are initially prepared in the vacuum state [13]. In-
deed, it is readily checked that this transformation out-
puts two clones whose individual states are Gaussian-
distributed, as in equation (2), with a variance o = 1/2
(i.e., the vacuum noise variance as i = 1). In particu-
lar, it copies all coherent states |1) with the same fidelity
fr.s = (Wlp(0) ) = 2/3.

This machine is optimal in the sense that it is impos-
sible to have o7 2 < 1/2. To prove this, let us consider the
following situation. A coherent state is processed through
such a cloner, the observable Z being measured on one
output clone While the observable p is measured on the
other one. Let us denote by X2 and X7 the respective
error variances corresponding to this joint measurement.
From the general theory on simultaneous measurement of
conjugate observables [1], we know that

Uips=¢e

2> (4)
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Fig. 1. Implementation of a 1 — 2 cloner using a phase-
insensitive linear amplifier and a 50:50 beam-splitter (BS).

Using equation (2), we get

(622 4+ 0°) (0p° + 0%) > 1, (5)
where §22%(p?) is the intrinsic variance of 2 (p) of the
input state and o? is the cloning-induced variance. Now,
using the uncertainty principle 6#26p* > 1/4 and the in-
equality a? + b? > 2va2b?, we conclude that o? > 1/2,
implying that the unitary operator (3) is indeed optimal
to achieve Gaussian cloning [10]. Physically, this means
that duplicating an arbitrary coherent state cannot be
performed without adding at least one unit of vacuum
fluctuation.

A possible implementation of this machine (see Fig. 1)
consists in processing the input mode a; into a linear
phase-insensitive amplifier [9] of gain G = 2:

=24, +al, (6)

with G; = (#;+ip;)//2 denoting the annihilation operator
for mode j. Then, one produces the two output clones by
processing the output signal of the amplifier through a
50:50 phase-free beam-splitter:

&—=Lm+&) iy = —
1 \/51 2)s 2

It is readily checked that this scheme leads to an equal
2- and p-error variance of 1/2 for both clones, that is, it
achieves the optimal Gaussian cloning.

We will now present two generalizations of this 1 — 2
Gaussian quantum cloning machine. The first one consists
in a transformation which from N (> 1) identical original
input states produces M (> N) output copies whose indi-
vidual states are again given by an expression similar to
equation (2), but with a different error variance o2y .
Using an argument based on the concatenation of cloners,
it is possible to derive a lower bound on o2y s, that is [10]

1 1
oiN > ~ (8)

so that the corresponding fidelity for coherent states
satisfies

Gout

(2/3 = (AZJ{ —+ \/5&3,

MN

< .
e Vi ©)



N.J. Cerf et al.: Cloning and cryptography with quantum continuous variables

Again, these bounds can be attained by a transforma-
tion whose implementation necessitates only a phase-
insensitive linear amplifier and beam splitters [7,17].
Loosely speaking, the procedure consists in concentrating
the N input modes into a single mode by use of a network
of beam splitters, then in amplifying the resulting mode,
and then in distributing the amplified mode into M out-
put modes through a second network of beam-splitters.
Note that the bounds in equations (8, 9) can also be de-
rived using techniques similar to the ones used for describ-
ing quantum nondemolition measurements. This has been
done in a paper establishing a link between cloning and
teleportation for continuous variables [20]. Roughly speak-
ing, the teleportation fidelity must exceed f12 = 2/3 in
order to guarantee that the teleported state is of better
quality than the state kept by the emitter.

The second generalization of the 1 — 2 Gaussian
quantum cloning machine we will briefly consider here is
the case where the £ and p quadratures are not treated
equally, and the case where the two output clones do not
have the same fidelity. Equation (2) then has to be re-
placed by

2
22 Pi,p )
3 502

o2, " 20%ip

1 —(
=—— [dadpe
il W) %F/ v dpe

x Dz, p)[) (| D' (z,p), (10)

where 02 (resp. o2 p) stands for the cloning-induced error

variance in the quadrature Z (resp. p) for the ith clone, in
state p;. In this case, it is possible to prove [13] that the
following cloning uncertainty relations must hold:

o? 0'571) > 1/4,

1,z

2 2
01 p0% 4 = 1/4,

(11)

and are saturated by the Gaussian cloners. For these clon-
ers, asymmetries between the output clones and between
the z/p variables can be characterized by the following
two parameters:

01,z O1,p

02,p

01,z

and \ = =

Ol,p

_ 02,z

X = (12)

02 2 02.p

As suggested in [17], asymmetric Gaussian cloners (with
X # 1) can be implemented by a scheme akin to Figure 1
in the sense that only two beam splitters and a single
linear amplifier are needed. We will see in the following
section how these asymmetric quantum cloning machines
can be used to assess the security of a continuous-variable
quantum key distribution protocol.

3 Quantum key distribution

In this section, we introduce a quantum protocol for
the distribution of Gaussian key elements, which is a
continuous-variable analogue of the protocol BB84 [2] —
we assume here that the reader is familiar with BB84.
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Our protocol, introduced in [14], works like BB84 but with
binary information being replaced by continuous informa-
tion that behaves essentially as in a classical Gaussian
channel. Other quantum cryptography protocols that in-
volve continuous variables were proposed earlier [21,23,
25] but, in contrast to our scheme, they use a continuous
quantum channel to carry discrete key elements.

Our protocol exploits a pair of canonically conjugate
continuous variables x and p, for instance, the two quadra-
tures of a mode of the electromagnetic field [26]. Alice
randomly chooses a random key element r that follows a
Gaussian distribution with mean zero and variance X2,
and randomly decides to encode it into either z (i.e.,
() = r) or p (i.e.,, (p) = r). An eavesdropper ignoring
which of these two encoding rules is used cannot acquire
information without disturbing the state.

Let us now describe the exact nature of the states used
for encoding each key element. When encoding the value
r ~ N(0,%;) in x, Alice creates a squeezed state such
that (z) = r, (p) = 0, Az? = 02 and thus Ap? = 1/402.
Similarly, when the value » ~ N(0,X,) is encoded in p,
the encoding state has (p) = r, (z) = 0, Ap? = 012) and
thus Az? = 1 /4012). On his side, Bob measures either x
or p at random. Like in BB84, half of the measurements
give results that are uncorrelated to Alice’s values, so half
of the samples must be discarded when Alice discloses
the encoding variable. Unlike BB84, however, measuring
the correct variable does not yield the exact value of r,
even with a perfect apparatus, because of the intrinsic
noise of the Gaussian state. The value r follows a Gaussian
distribution N(0, X, ), to which some Gaussian noise is
added N(0, o5 ), thus resulting in a Gaussian distribution
with variance X2  + 02 . We can therefore model the
transmission of r as a classical Gaussian channel with a
signal-to-noise ratio (SNR) equal to X2 /02 or X2 /a2,

An important requirement of the protocol is to make it
impossible for Eve to be able to infer which encoding vari-
able Alice used. For this, measuring the correct or incor-
rect variable (z or p) must yield statistically indistinguish-
able results. If, in contrast, Eve was able to detect (even
not perfectly) whether she measured the wrong variable,
then she could get and exploit this information to improve
her attack. This indistinguishability requirement can be
expressed as the equality of the density matrices resulting
from the two encoding rules, or equivalently as [14]

1+ =2=14+—"2L=
+ +0'2 doZo?

(13)

A proof of this is given in Appendix A. This also means
that the SNR is the same for both variables z and p,
and that the information rate is given by Shannon’s for-
mula [16]

1
1= 3 logy (14 22/02) = —logy(20.0,). (14)
This information is non-zero provided that the z- or
p-states (or both) are squeezed below the shot noise
limit (02, < 1/2).
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3.1 Eavesdropping by cloning

Let us now discuss an individual eavesdropping of this
protocol with cloning machines such as those defined in
Section 2. Eve makes two clones of the state sent by Alice,
one of which is transmitted to Bob, and the other is mea-
sured in the correct variable when Alice reveals the en-
coding rule. This happens to be the optimal individual
eavesdropping strategy as shown in [14,24].

We use a 1 — 2 cloning machine, and keep the freedom
to make a better clone for Bob or Eve (parameter x) and to
get more accuracy in x or p (parameter \). The subscripts
1 and 2 for the two copies are replaced respectively by B
and FE for the two recipients. According to equation (11),
the added variances on the clones will be:

1
0'123’1 = %X)\, 0,23,1) = Ex)\ L (15)
1

Let us calculate the resulting information rates. When Bob
measures x, the result is affected both by the intrinsic fluc-
tuations of x and by the noise induced by the cloning op-
eration, thus resulting in a total variance o2 + xA/2. This
is the noise variance in the Gaussian channel representing
the communication between Alice and Bob through Eve’s
cloning machine. Therefore, the information rate is now

1 32
Ip.,==lo 1+ —=—. 17
P2 g2< 0§+%XA) a
Similarly, one can calculate the new variance of p mea-
sured by Eve on her clone, namely ai +x~1A~1/2. This

gives an information rate

1 L 1 1 2’% (18)
Bp =501+ —Z—F"77]-

L) 012) 4 % x—iA-1

Adding the last two information rates indicates the bal-
ance between Bob’s and Eve’s information. Remarkably,
the information that Eve gains by using this attack on p is
exactly equal to the information that Bob loses on = [14],

1 32
IB,erIEJ,:ilog2 <1+0—§>—I. (19)

xr
Of course, this balance also works when interchanging x
and p, namely Ip , +Ig . = I.

This result is interesting because it allows Bob to
bound from above the information gained by a possible
eavesdropper. Assuming symmetry of the protocol in z
and p, Bob can estimate I — I and is then guaranteed
that I < I — Ip (in practice, a part of the information
loss will be due to the channel noise). From reference [22],
it is known that with reconciliation and privacy amplifica-
tion carried out over a public authenticated channel, one is
guaranteed to generate secret key bits whenever Ig > Ip.
This last condition is in turn guaranteed provided that
Ip > I/2, so that up to a 50% information loss on Bob’s
side is acceptable in order to generate key bits. In partic-
ular, an eavesdropping with y > 1 generates at least 50%
of information loss so that it makes the scheme insecure.
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3.2 From Gaussian key elements to secret bits

Let us now investigate the classical part of the key distri-
bution protocol since we have to deal with reconciliation
and privacy amplification based on continuous raw key
elements here, in contrast to BB84. Shannon’s formula
gives us an upper limit on the number of bits one can
send through a Gaussian channel with a given SNR. In
our protocol, neither Alice nor Bob chooses the Gaussian
random values. Yet, we want them to be able to extract
a common string of bits out of their correlated Gaussian
values, revealing as little information as possible on the
public channel.

Our secret key distillation procedure [29] works in the
following way. First, Alice and Bob are going to extract
common bits out of their Gaussian-distributed values, us-
ing a binary correction algorithm such as Cascade or a
variant [5,15,27,30]. They will use it several times, on
several real-to-binary conversion functions. Then, the re-
sulting bits will undergo the usual privacy amplification
procedure [3,4,22], for instance using a universal class of
hash functions.

Let X denote the random variable representing Alice’s
Gaussian values, and X’ Bob’s values. Alice uses a
set of real-to-binary conversion functions S;(X) = 0,1,
(1 < ¢ < m). These are called slices, in the sense
that instead of performing reconciliation on the real-
valued string x1._;, we operate on each string S;(z1..;)
sequentially, like slices of the main, real-valued string.
On his side, Bob uses another set of functions .S;, called
slice estimators, which reflects his best guess on the bit
Si(X) given his current knowledge. The slice estimator

S; is not only a function of X’ but also of the previ-
ous slices, S;(X’,S1(X),...,S;—1(X)). This results from
the fact that the slices are corrected sequentially for
i=1,...,m, so that upon correcting slice ¢ Bob already
knows S1(X),...S;—1(X). By carefully choosing the func-
tions S; and S;, both parties can extract a common string
of bits out of the correlated Gaussian values, while only
disclosing a little more than H(S1(X),...,Sn(X)|X’)
bits on the public channel. A more detailed analysis is
given in [29].

Let us take an example. Assume the channel has
X2 /02 = 15, which means that Alice and Bob can share up
to I = logy(1+X2/0?)/2 = 2 bits per raw key element. We
assume m = 5 slices as a trade-off between the efficiency
of large m and the use of reasonable computing resources.
The slice functions S;(X), 1 < i < 5 are constructed in
the following way. First, the Gaussian distribution of X is
divided into 2™ = 32 intervals. The interval labeling func-
tion T'(X), which associates an interval number (from 0
to 31) to each value of x, is chosen so as to maximize the
mutual information I(T'(X); X’). Thus, Bob starts with
an optimal knowledge of T'(X). Then, we create the slice
functions by assigning bit values to each of these intervals.
Stated otherwise, we create a bijection between S7. 5(X)
and T(X) so that each vector of the 5 slice bits repre-
sents one (and only one) interval defined by T'(X). Much
freedom is permitted at this step, but what we found to
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work best is to assign the least significant bit of the inter-
val number to S1(X), the second bit to S2(X), and so on
up to the most significant bit to S5(X). Roughly speak-
ing, this means that X and X' are first reconciliated on a
fine-grained scale, then on a coarse-grained scale.

The slice estimator functions S7 _ 5(X’,...) are con-
structed from the slices ;.. 5(X) and from the joint prob-
ability density fx x/(z,z’). Each estimator S; evaluates
whether S;(X) = 0 or S;(X) = 1 is more likely condition-
ally on the arguments given to the estimator, namely X’
and the previous slices Sj<;(X).

In the present example, Alice’s and Bob’s bits are al-
most uncorrelated when correcting slices 1 and 2. The bi-
nary correction algorithm does not have to be used at
this point — it is enough for Alice to entirely reveal S1(X)
and S3(X) for the whole string. Then, slice 3 on Alice’s
side and the slice estimator 3 on Bob’s side produce two
bit strings that match 76% of the time — it is thus possible
to proceed with error correction using a binary correction
algorithm such as Cascade or a variant [5,27,30,15]. Note
that the bit strings would be less correlated if the knowl-
edge of S1(X) and S3(X) was not brought to Bob. Then
for slice 4 (resp. slice 5), Alice’s and Bob’s string match
98% (resp. 99.999%) of the time, for which the binary cor-
rection will disclose only a small amount of information.
Again, the knowledge of slices 1-3 helped Bob accurately
estimate slice 4, which in turn helped him estimate slice 5.

As a result of this 5-step correction, Alice and Bob
share a string of bits whose entropy is H(S;..5) = 4.8 bits
per raw key element. Assuming a perfect binary cor-
rection algorithm, about 3 bits per raw key elements
were disclosed. Roughly speaking, the net effect is thus
4.8 —3 = 1.8 bit of secret information per raw key element
after privacy amplification (which is to be compared to the
2 bits per key element as given by Shannon’s formula).

This is of course only an example. More elaborate con-
structions can be performed, such as gathering d Gaussian
key elements at once. In fact, it was shown in [29] that
the disclosed information reaches the Shannon bound as
d — 00, just like for instance data compression works best
for asymptotically large block sizes.

Now that we showed how quantum cryptography (fol-
lowed by reconciliation and privacy amplification) can be
set up with continuous variables, let us investigate an-
other application of continuous variables to a special kind
of quantum cloning machines.

4 Phase-conjugate input quantum cloning
machines

It is known that an antiparallel pair of qubits is intrin-
sically more informative than a pair of parallel qubits
if the goal is to encode a direction in space [19]. Sim-
ilarly for quantum continuous variables, one can show
that more information can be encoded in a pair of phase-
conjugate coherent states [¢)[1*) than in two identical
replicas |1)]¢) [12]. Extending on these ideas, we present
here a phase-conjugate input (PCI) quantum cloning ma-
chine, that is, a transformation which, taking as input
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Fig. 2. PCI cloner that produces M clones and M’ anti-clones
from N replicas of |1) and N’ replicas of [1)*). The modes
are concentrated and distributed by a Discrete Fourier Trans-
form (DFT) and amplified in a phase-conjugate input amplifier
(PCIA).

N replicas of a coherent state [1)) and N’ replicas of its
complex conjugate |¢*), produces M optimal clones of
[y [11]. Again, we will require that all the clones are
treated equally, and that the cloner is covariant with re-
spect to displacements and rotations in phase space. As
a matter of fact, it turns out that such a transformation
can be implemented optimally using a sequence of beam-
splitters, a single non-linear crystal, followed by another
sequence of beam-splitters, just as in the case of standard
cloning. The procedure is the following (see Fig. 2).

(i) Concentrate the N replicas of |¢) stored in the N
modes {¢;} (I =0...N—1) into a single mode a4, resulting
in a coherent state of amplitude v/N 1. This operation can
be performed with a network of beam-splitters achieving
a N-mode Discrete Fourier Transform (DFT) [7]. We get:

1 N-1
ay = —F—= Z Cl, (20)
\/N =0

and N —1 vacuum modes. Similarly, with a N’-mode DFT,
concentrate the N’ replicas of |¢)*) stored in the N’ modes
{d;} 1=0...N'"—1) into a single mode as. This results

in a coherent state of amplitude v/ N’ ¢*. We have:
N'—1

1
ngl.

ag = (21)

(ii) Apply the following transformation on the modes aq
and as, resulting in modes b; and by defined by

b1 :\/6(11+va1(1;,

by = VG — laJ{ + \/aag, (22)
where
vVN'M'—NM
\/5: leN bl (23)
with
M —M=N'—N. (24)

For obvious reasons, we call this transformation a “phase-
conjugate input amplification” (PCIA).
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(iii) Distribute the output mode b, into M clones {c;}
(1=0...M —1) with a M-mode DFT:

M-1
1 .
CI _ b + elQTrk,‘l/Z\/IU : 25
=i S )

where {vg} (K = 1...M — 1) denote M — 1 additional
vacuum modes. It is readily verified that this procedure
yields M clones of |¢). Interestingly, the amplitude bs of
the other output of the PCIA has a mean value v/ M/y)*.
Therefore, it can be used to produce M’ phase-conjugate
clones (or anti-clones) of |¢), {d;} (I =0...M’—1), using
a M'-mode DFT:

M -1
]_ . ’
d, = by + g et2mkl/M 4, (26)
VM k=1

where {wi} (k =1... M’ — 1) denote M’ — 1 additional
vacuum modes.

Some algebra shows that this procedure is optimal to
produce M clones, and that the additional M’ anti-clones
are also optimal [11]. Furthermore, since the step (ii) of
our procedure is linear and phase-insensitive, the resulting
PCI cloner is covariant with respect to translations and
rotations of the state to be copied: all coherent states are
copied equally well, and the cloning-induced noise is the
same for all quadratures.

It is straightforward to calculate the noise variance of
the clones and anti-clones:

1 1 G-1
(Ac))* = (e +efel) — () el) = 5 + =37
1 G-1
2
(Ad)" =5+ (27)

As expected, the variance of the output clones exceeds
1/2, reflecting that perfect cloning (anti-cloning) is indeed
impossible. Instead, they suffer from an additional noise
given by 0% 3y = (G—1)/M. The same conclusion holds
for the anticlones.

4.1 Balanced phase-conjugate input cloner

Consider now the balanced case (N = N', M = M'),
for which simple expressions of the noise variance and
the fidelity can be obtained. We then have G = (M +
N)?/4AM N, giving

1 (M-N)?
(A = (adp? = L+ MLZDT 0 oy
and
1 AM?2N
(29)

N — .
INm 1403 vy 4M2N+ (M - N)?

Let us compare these quantities to the variance and fi-
delity of a 2N — M usual cloning machine, as obtained
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by replacing N into 2N in equations (8, 9). Of course, in
the trivial case where M = 2N, standard cloning can be
achieved perfectly, while the balanced PCI cloner yields
an additional variance equals to 1/(16.N). However, if M
is sufficiently large, the (N, N) — M PCI cloner outper-
forms the standard 2N — M cloning machine. Also, com-
paratively more anti-clones with a higher fidelity are pro-
duced with the PCI cloner. Indeed, a standard 2N — M
cloning machine produces M — 2N anti-clones of fidelity
2N/(2N + 1), which is actually the fidelity of an opti-
mal measurement of 2N replicas of |¢), whereas a PCI
cloner produces M anti-clones with a higher fidelity, as
given by equation (29). In particular, for M — oo, we see
from equation (28) that the additional noise induced by
a PCI cloner is 1/4N, that is, one half of the noise in-
duced by a standard 2N — oo cloner (i.e., 1/2N). In this
case, the output of the PCIA can be considered as classi-
cal and the underlying process appears to be equivalent to
a measurement. This reflects that more classical informa-
tion can be encoded in N pairs of phase-conjugate replicas
of a coherent state rather than in 2N identical replicas,
a result which was first proven for N = 1 in [12]. More
generally, in the unbalanced case (N # N’), it is readily
checked, using equation (23), that the optimal measure-
ment results in a noise that is equal to that obtained by
measuring (v/N 4 v/N’)? identical replicas of the input in
the absence of phase-conjugate input modes.

4.2 Unbalanced phase-conjugate input cloner

As we have just shown, the balanced PCI cloner results
in better cloning fidelities than a standard cloner. More
generally, we may ask the following question: in order to
produce M clones of a coherent state |¢)) from a fixed
total number n of input modes, N of which being in the
coherent state |1)) and N’ of which being in the phase-
conjugate state |)*), what is the phase-conjugate fraction
a = N'/n that minimizes the error variance of the clones?

From equation (23), we see that for fixed values of n
and M, the gain G only depends on a and varies as

-/ Eyi—a

2a — 1

(30)

In Figure 3, the value of 012\,7 N 1s plotted as a func-
tion of a for n = 8 and different values of M > n. In
the trivial case where M = n = 8, the minimum addi-
tional variance is of course zero, and is obtained for a = 0.
The cloning transformation is then just the identity. How-
ever, when M > n+1, using phase-conjugate input modes
yields lower variances than standard cloning if a is cor-
rectly chosen (the lowest variance is then always attained
for a # 0). Remarkably, the value of a achieving the mini-
mum variance is not equal to 1/2 for finite M, that is the
optimal input partition contains more replicas than anti-
replicas. In the limit of large M, however, the number of
anti-replicas achieving the lowest variance tends to n/2,
and the curve G(a) tends to a symmetric curve around
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Fig. 3. Cloning-induced noise standard deviation 1/012\, N' M

as a function of the phase-conjugate input fraction a = N’ /n,
for n = 8 and several values of M/n. The lines are shown only
to guide the eye.

a = 1/2. This behavior was expected since M = oo corre-
sponds to a measurement and we expect that measuring
the value of ¢ from N replicas of |[¢)) and N’ replicas of
[1*) is equivalent to measuring ¢ from N’ replicas of |¢)
and N replicas of [¢)*). So, we conclude that the optimal
measurement is achieved with balanced inputs (N = N'),
as previously mentioned. Finally, in the case where a = 1,
the transformation consists in producing M clones of |¢))
from n replicas of |1)*). This is just phase-conjugation, for
which we know that the best strategy is to perform a mea-
surement [12]. The additional variance is therefore given
by 1/n, which does not depend on M. This explains why
all curves converge to the same point at a = 1.

5 Conclusions

In summary, we have studied continuous-variable cloning
machines, which produce several copies from one or more
replicas of an arbitrary coherent state. We have derived
the optimal fidelity of such cloners, as well as the cloning
transformations that achieve this fidelity and the poten-
tial methods to implement them. We have then proposed
a quantum key distribution protocol relying on continu-
ous variables, and shown how to apply reconciliation and
privacy amplification to the generated continuous key el-
ements. We have investigated the balance between the in-
formation gained by the eavesdropper and that received
by the authorized receiver, using cloning as an optimal in-
dividual eavesdropping strategy. It results from this anal-
ysis that our protocol can be made secure provided that
the authorized receiver collects at least one half of the
available information. Finally, we have analyzed a new
class of continuous-variable cloning machines, which admit
phase-conjugate input modes in addition to the normal in-
puts. By exploiting the antiunitarity of phase-conjugation,
these new cloners can beat the standard cloners in some
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cases. In general, some non-zero optimal phase-conjugate
input fraction must be used in order to maximize the
cloning fidelity. Finally, it should be emphasized that
these phase-conjugate input cloners do not extend on a
qubit-based concept, in contrast with all previously devel-
oped information-theoretic processes for continuous quan-
tum variables. Such a qubit cloner, admitting additional
flipped qubits as inputs, has yet to be found.
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Appendix A: Density matrices of encoding
rules

In this appendix, we give further details regarding the
protocol defined in Section 3. In particular, we prove the
equality of the density matrices p, and p, corresponding
to Alice’s two encoding rules provided that equation (13)
is verified.

Define the Gaussian squeezed states |, (r, o)) such
that () = 7, (p) = 0, Az? = 02 and Ap? = 1/402.
Similarly, let |¢p(r,0p)) be such that (z) = 0, (p) = r,
Az? = 1/40} and Ap® = o2. In the z basis, our states
have the following amplitudes:

(@|the(r,00)) = ﬁe_(”_’")z/%i a1
(hp(r,op)) = % —o2a? jira (32)
The density matrices p, and p, are defined as:
too  g-r?/253
Pz :/—oo drmwx(“%)ﬂfﬁx(n%ﬂ (33)
and
oo —r?/23)
Pp = [m drmwp(r, o)) (W (r, ). (34)

Let us now calculate (z|pz|z’) and (x|pp|z’) in order to
show that p, = p,

/ e o7 /252~ (@ =) /402~ (2’ =) /402
<xlpzlx>—/m T 002,27 '

(35)

The exponent of e in the above equation can be rewrit-
ten as

S (eta’) )2
(7" - 2(ag+2§)> 22 4 g2 X2z —a)?
2X202/(02 +X32)  4(oF +237) 8ozi(oz +22)
(36)
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After integration, this yields

22442 52—a’)?
e 4(g§,+):§)e 802 (02+%2)

x| pg |’y = 37
Bloule’) = s (37)
For p,, we have
+o0o
20 2 2
lpyle') = [ drg e
P oo 2r X,
% eir(zlfz)efai(z‘2+a:'2)
2

_ 2% efai(zumﬂ)e*%(m*m’f. (38)

V2r

Taking (13) into account, we have (z|p;|z’) = (z|pp|z’)
for all z, 2/, hence p; = pp.
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